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ABSTRACT

In some extensions of the standard model of particle physics, the values of the funda-

mental coupling constants could vary in space and time. In some string inspired scenarios,

the couplings relate to the size of extra dimensions. Some recent observations of QSO

hinted at possible time and spatial variation of the fine structure constant. We analyzed

the Bekenstein-Sandvik-Barrow-Magueijo (BSBM) model which posits the existence of a

cosmological scalar field and allows the field and the fine structure constant to evolve with

the expansion of the universe as well as the string inspired model runaway dilaton. We

explore which models are consistent with the CMB anisotropies measured by Planck and

quasar observations.

I. INTRODUCTION

As the unification of fundamental forces of nature only seem to exist in finite form if there

are more than our familiar four dimensions, it is likely that our familiar natural constants

defined in higher dimension and the three dimension projection of it that we are familiar

with is not constant. This idea has inspired an increasing interest in nature’s fundamental

constants and their variation. This idea was first introduced by Dirac as he showed the

numerical coincidence that 3e2/ (Gmpme) ≃ tmec
3/e2 where e is the charge of electron, mp

is the mass of proton, me is the mass of electron, G is our known gravitational constant and c

is the speed of light. He suggested fundamental constants such as G, Planck’s constant,ℏ, me

etc are dynamic parameters that vary as a function of time [12]. While these specific scalings

have been ruled out on anthropic grounds, it inspired a class of theories for the dynamic fine

structure constant, α (α = ℏc/e2) which tells us how photons and electromagnetic particles

interact in space [2].

Another significant motivation for studying fine structure constant variation comes from

recent observation of CMB polarization and measurements of primordial lights from mea-

surements of distant supernovae, Sloan Digital Sky Survey, Planck, COBE in recent years.

These observations has also strengthened our understanding of early universe cosmology

such as inflation, recombination etc. Upcoming observational data from Simons Observa-

tory, CMB S4, BICEP/KECK and other next generation experiments may show deviation
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from standard model since our current standard model cannot explain the phenomena we

observe in our universe, and probe physics of neutrinos, number of their effective species,

and deviations from general relativity (GR) at cosmological scales[19, 20].

Some recent observations has shown a possibility of α variation. In particular, the ab-

sorption spectra of quasars, showed a possibility of cosmological time and spatial variation

on the fine structure constant [24, 30, 36, 38, 39]. For this work, we use Quasar observation

data test for the first time well-modulated models of α variation using CMB radiation. We

base our work on Ref. [17]’s model independent fundamental constant variation using CMB

polarization and temperature anistropies to explicitly constrain our models for consistent

fine structure constant variation across redshift 3 (Quasar observation) up to and including

decoupling and matter-radiation equality till redshift 4000.

For this work, we use two theoretical models that can that incorporate α as a dynamical

constant: Bekenstein’s α variation model and Damour’s Runaway Dilaton Model. Beck-

enstein’s α variation model is the simplest U(1) gauge invariant model which has a con-

servation law where the conserved charge is proportional to e. This allows electric charge

to vary in space without throwing away charge conservation. The full theory, Bekenstein-

Sandvik-Barrow-Magueijo (BSBM) model, and some extensions of BSBM that considers

more complicated scalar field couplings and potentials allow us to predict α across time and

space. On the other hand, the runway dilaton model also allows conservation of Maxwell’s

equation but it also gives us a direct conformal coupling to matter. The strong coupling of

the associated scalar field in this model allow variation on the fine structure constant.

We explore these models to find suitable families of parameters that allow fine structure

to vary across time. Since this work relies on developing novel numerical techniques to

understand physical phenomena, it is important to understand both the physical theories,

and background for the used computational methods. We will be discussing them separately

in the following sections.

II. IMPORTANT PHYSICAL BACKGROUND

In this section, we give an overview on the relevant scientific background to understand

the cosmology of fine structure variation. In particular, we will talk about the Quasar

Absorption Spectra which motivated this work, cosmology of the early universe and discuss
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Figure 1: Quasar Observation as seen from earth. Image Credit: Science News

.

the relevant formalism, the cosmic microwave background radiation and other processes that

took place in the early universe which led us to constrain fine structure constant using this

particular data. We also discuss the BSBM Model, the Runaway Dilaton Model associated

with the fine structure constant variation.

A. Quasar Absorption Spectra

Atoms absorb electromagnetic radiations at different wavelengths. The wavelengths of

these electromagnetic radiation (light) shows up at different color of light when we observe

the atom’s power spectra. Quasars are strong sources whose light would be absorbed by

influencing gas. So, their spectra can be used as probes of varying α.

When we observe Quasar from the earth, we see atoms and ions which absorb light at

different characteristic wavelengths (colours) determined by the type of ion and the position

of sight (redshift). The colors absorbed in an intervening gascloud depend on the redshift

and the ions present. It is related to fine structure constant by ∆λ ∝ α2. Recent observation

of Quasi-Stellar Object (QSO) has shown deviation from laboratory observed value of the

fine structure constant by 3σ.
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B. The Early Universe, its evolution

The beginning of the space-time started from a singularity known as Big Bang. Right

after the big bang, the universe expanded exponentially instantly. This process is inflation.

The universe has been expanding ever since. It is widely accepted the universe is flat and

spatially homogeneous and isotropic. For an expanding homogeneous and isotropic universe

we use a spacetime metric that is maximally symmetric when we look at three dimensional

slices. We can consider our spacetime then as R × Σ where Σ is a maximally symmetric

manifold. Then the spacetime metric is:

ds2 = −dt2 +R(t)dσ2, (1)

Here R(t) is a scale factor and dσis the metric on Σ. It can be expressed as:

dσ2 = γij(u)du
i duj, (2)

The ui are spatial coordinates and γij is a maximally symmetric three dimensional metric.

The fact that the dt2 is independent of spatial coordinate and there is no dudt term means

that they are comoving coordinates. This is set up this way because the universe can

look isotropic only to a comoving observer. The fact that we are not moving with respect

to cosmic expansion due to earth’s motion causes us to see a dipole anistropy in cosmic

microwave background radiation due to Doppler effect. Using ansatz of a static, spherically

symmetric solution and applying spherical symmetry we can solve for the Ricci tensor and

yield the metric on three surface Σ,

dσ2 =
dr̄2

1− kr̄2
+ r̄2dΩ2. (3)

Here r̄ is the comoving radial coordinate, dΩ2 = dθ2 + sin2θdϕ2 and k is the value of

curavture. The curvature value corresponds of curvature on Σ as one would expect. We can

also substitute the R(t) with a dimensionless scale factor defined as:

a(t) =
R(t)

R0

, κ =
k

R0

. (4)

Then the spacetime metric can be rewritten as below:

ds2 = −dt2 + a2(t)

[
dr2

1− κr2
+ r2dΩ2

]
. (5)
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To understand the scale factor a(t), we need to plug a(t) to Einstein’s equation:

Rµν = 8πG

(
Tµν −

1

2
gµνT

)
, (6)

where Rµν is Ricci Tensor, gµν is metric tensor and Tµν is energy momentum tensor. Now

for a universe filled with perfect fluid matter and energy, the energy-momentum tensor is

just:

Tµν =


ρ 0 0 0

0 p/c2 0 0

0 0 p/c2 0

0 0 0 p/c2

 . (7)

Now, choosing an equation of state p = wρ makes the energy-conservation equation:

ρ̇

ρ
= −3(1 + w)

ȧ

a
(8)

Here, w is a constant. For different value of w depending on whether we are in a matter

dominated or radiation dominated or vacuum dominated universe, we get a different rela-

tionship between the scale factor and the density. The scale factor is related to the density as

the equation of state power. What it means is that, for a matter dominated universe, since

matter omits zero pressure, we can set w to 0. Then matter density, ρm ∝ a−3. On the other

hand, for a radiation dominated universe, radiation can be thought of as electromagnetic

radiation as well as relativistic particles that move so fast that they are not distinguishable

from photons. Using the fact that Tµν can be expressed in terms of field strength and an

isotropic gas of relativistic particle is a perfect fluid, we can get the equation of state as

Pr = 1
3
ρr, w= 1/3. Then the solution to Eq. (9) becomes ρr ∝ a−4. As we can see, the

energy density in radiation falls off slightly faster than energy density in matter. As a re-

sult, the radiation energy density is less than matter energy density (almost ∼ 103 times).

However, in early times, the universe was denser and radiation dominated. We therefore

must account radiation density when modeling an expanding universe at early times.

The universe takes form of a perfect fluid when we consider vacuum energy. Which gives

us solution to equation (9) as ρΛ ∝ a0. Which means as the universe expands, the vacuum

energy win over the other two terms in the expansion equation.

Now going back to Einstein’s Eq. 9, for µν=00, we get:

− 3
ä

a
= 4πG(ρ+ 3p). (9)
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Eq. (10) gives the second derivative of expansion. Since the discovery of Hubble param-

eter, cosmologists have looked for evidence for the expansion of the universe to slow down

due to gravity. However, in 1998, two distinct studies on distant Type Ia supernovae gave

evidence that the expansion rate of the universe has been accelerating [26, 34] . Subsequent

observations, including more detailed studies of supernovae and independent evidence from

clusters of galaxies, large-scale structure, and the cosmic microwave background (CMB),

confirmed and firmly established this remarkable finding [15]. This presented two possible

explanations: 1) 75 percent of the energy density of the universe has a large negative pres-

sure called dark energy, 2) general relativity breaks down on cosmological scales. Now there

are different possibilities for dark energy models. One is vacuum energy. General covariance

requires that the stress-energy of the vacuum takes the form of a constant times the metric

tensor. Which makes the pressure equal to negative density. However, it also means that

vacuum energy is mathematically just a constant. Attempts to calculate vacuum energy

density has given a diverse set of results. For each mode of a quantum field there is a

zero-point energy ℏω/2, then the density is :

ρVAC =
1

2

∑
fields

gi

∫ ∞

0

√
k2 +m2

d3k

(2π)3
≃
∑
fields

gik
4
max

16π2
. (10)

Here gi accounts for degrees of freedom and the sum runs over all quantum fields (quarks,

leptons, gauge fields, etc). Here kmax is an imposed momentum cutoff, because the sum

diverges quartically. This creates a problem because if the energy density contributed by

just one field is to be at most the critical density, then the cutoff kmax must be ¡ 0.01 eV.

This energy scale is extremely small. If we compare it to Planck energy scale where we

expect quantum field theory in a classical spacetime metric to break down, the zero-point

energy density would exceed the critical density by 120 orders of magnitude.

To solve the dark energy problem, we can introduce a new degree of freedom in the form of

a scalar field to make the dark energy dynamical [14, 40, 41]. Here we also review the scalar

field dynamics using equations of Chameleon theory because of its structural similarity with

BSBM. Chameleon here refers to the ϕ field. In high density regions, the scalar field blends

with its environment and becomes essentially invisible to searches for Equivalence Principle

violations. The action for the field using scalar-tensor theory [5] is:

S =

∫
d4x

√
−g

[
M2

P

2
R− 1

2
∇µϕ∇µϕ− V (ϕ)

]
+

∫
d4xLm (g̃µν) , (11)
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where Sm =
∫
d4xLm (g̃µν) =

∫
d4x

√
−g̃L̂m (g̃µν). This describes a canonically normalized

scalar field with some potential V (ϕ).This field is coupled with matter through the Jordan

frame metric:

g̃µν = A2(ϕ)gµν . (12)

This non-minimal coupling described by the coupling function A(ϕ) results in deviations

from general relativity. Varying ϕ with respect to the scalar field gives [using δϕ(x)/δϕ(y) =

δ4(x− y) ]:
δS

δϕ(y)
=

∫
d4x

√
−g [□ϕ(x)− V ′]

δϕ(x)

δϕ(y)
+

δSm

δϕ(y)
. (13)

The last term of the right hand side can be written as below using Tµν ≡ − 2√
−g

δS
δgµν

δSm

δϕ(y)
=

√
−g

A′

A
Tm
µνg

µv δϕ(x)

δϕ(y)
. (14)

Then, we can rewrite Eq. (15) with Tm ≡ Tm
µνg

µν :

δS
δϕ(y)

=
√
−g (□ϕ− V ′) +

√
−gA′

A
Tm
µνg

µν = 0,

□ϕ = V ′ − A′

A
Tm.

(15)

Then for non-relativistic matter (Tm ≈ −ρm) and effective potential V ′
eff = V ′ + A′

A
ρm, this

reduces to □ϕ = V ′
eff . On the other hand, the d’Alembertian can be rewritten as:

□ϕ = gµν∇µ (∇νϕ) = ∇µ (∂
µϕ) ,

= ∂µ (∂
µFϕ) + Γµ

µλ

(
∂λϕ

)
,

= −∂2
0ϕ− 3H∂0ϕ.

(16)

Then the equation of motion for the scalar field becomes:

ϕ̈+ 3Hϕ̇+ V ′
eff = 0. (17)

Instead of varying the action with respect to ϕ, if we vary the action with gµν , the stress-

energy tensor project onto time-direction of fluid rest frame.The pressure and density then

takes the form below [26]:

p =
ϕ̇2

2
+ V (ϕ), (18)

ρ =
ϕ̇2

2
− V (ϕ). (19)
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Scalar-field dark energy can be described by the equation-of-state parameter similar to Eq.

(9) as:

w =
ϕ2/2− V (ϕ)

ϕ2/2 + V (ϕ)
=

−1 + ϕ2/2V

1 + ϕ2/2V
. (20)

For a slowly evolving scalar field (ϕ̇/2V << 1), we get a slowly varying vacuum energy with

w = -1. On the other hand, from our previous discussion of expanding universe, combining

Eq. (10) and Eq. (11) from our above discussion, it can be shown that:(
ȧ

a

)2

= 4πGρ− κ

a2
. (21)

This equation is known as the Friedmann equation. It is perhaps one of the most important

equation in cosmology. The left hand side of the equation tells us whether and how much

the universe is expanding as a function of time denoted by Hubble parameter. The right

hand side constitutes of everything that makes up our universe like matter, radiation, and

any other forms of energy. This seemingly simple equation connects matter and energy

to expansion rate of the universe at any given time and help us understand growth and

formation of the large scale structures (by adding perturbations to the density).

We can rewrite the Friedmann equation to get density parameter, Ω in terms of H:

Ω =
ρ

ρcrit
=

8πG

3H2
ρ. (22)

As one can imagine for different type of energy density, ρi = ρi0a
−n−i using are solutions

to Eq. (9). Then for each energy density is we will have a corresponding Ω that is a

dimensionless quantity and
∑

Ωi = 1. But this is not the total density as we are only taking

account of energy density. There is also curvature density which is Ωc = 1 − Ω. Then we

can finally write the Hubble parameter with our newly defined density parameters:

H2(a) = H2
0

(
Ωma

−3 + Ωra
−4 + Ωka

−2 + ΩΛ

)
. (23)

Throughout this work, for our defined cosmological parameters, we use Hubble parameter

today has value H0 ∼ 70 km s−1 Mpc−1 and determine the value of the density parameters

using the luminosity-distance formula. These parameters can also be constrained using

radiation that reaches us from big bang known as the Cosmic Microwave Background (CMB)

Radiation.

For the last discussion of this section, we will relate redshift with our defined parameters

as the data from Quasar we will be using are given as function of redshift. Now, consider a
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photon which is known to have a metric ds = 0. Then the FRW metric tells us:∫ t0

te

c

a(t)
dt =

∫ rM

0

dr = rM . (24)

This can be written this in terms of wavelength:

λe

a (te)
=

λ0

a (t0)
. (25)

Using the above relation and definition of redshift, we get

a(t) =
1

1 + z
. (26)

We will be using this definition throughout this whole writing assuming the redshift is 0

today.

C. Decoupling and the CMB

Since the early universe was extremely dense and hot, all the matter is ionized and forms

a plasma in which the photons are bound to move with the matter due to their scattering off

free electrons. Even if the universe is initially largely homogeneous, quantum fluctuations

are created. These fluctuations in the density of the universe are amplified by the action

of gravity. It makes the region further denser. At this stage, the plasma was opaque to

electromagnetic radiation as Thomson scattering of free electrons made the mean free path

that each photon could travel before encountering an electron very short.

Now, as the universe expanded, the temperature cooled down. Once it has cooled suffi-

ciently, and the energy level became stable enough for electrons to bond with protons for

forming neutral atoms. This process is known as recombination. The process of recombina-

tion can be described using the Saha equation for a single hydrogen atom:

1−Xe

X2
e

=
t
√
2ζ(3)√
π

η

(
T

me

)3/2

exp

(
13.6eV

T

)
. (27)

Where Xe is the ionization fraction and η is the baryon to photon ratio.

Once the gas (previously what was plasma) became neutral, the photons that previously

had a short mean free path are free to spread throughout the universe. The mean path for

these photons then became much larger than the Hubble distance. It filled the universe with

freely propagating photons with blackbody radiation of temperature ∼ 3000K. This process
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Figure 2: Hydrogen atom recombination in early universe as seen in Ref. [33]

.

took place about 375,000 years after the Big Bang (around redshift ∼ 1100, 13.6 billion

years ago). This isotropic radiation that spread throughout the universe can be detected on

earth today as perfect blackbody radiation spectrum.

However, as the universe expanded the photons redshift. So, the temperature of the

photons drop with the increase of the scale factor (a) introduced in previous section as

T ∝ 1/a. We can detect these photons today as the CMB.

The average temperature of CMB is 2.725K. However, in 1992, COBE satellite found

fluctuation in temperature with a variation of T ∼ 10−5. We can write down a temperature

function depending on its angular position in the sky. We can express this in terms of the

spherical harmonics Y m
ℓ (θ, ϕ), which form an complete, orthogonal basis for the space of

functions on the sphere. Then we may find coefficients alm such that:

T (θ, ϕ) =
∑
ℓm

aℓmYℓm(θ, ϕ). (28)

We can then define the angular power spectrum as:
〈
amℓ
(
am

′

ℓ′

)∗〉
= δℓℓ′δmm′CTT

ℓ . We can

therefore get an estimate of the power spectrum at some given value l as the average of over

all modes as:

ĈTT
ℓ =

1

2ℓ+ 1

ℓ∑
m=−ℓ

|fm
ℓ |2 , (29)

with an uncertainty of
√
2/(2ℓ+ 1). This uncertainty is known as cosmic variance. This

tells us how accurately can the spectra ultimately be measured.

Gravitational attraction tends to increase the density in dense regions, but the radiation
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Figure 3: CMB Temperature Anistropy as observed by Planck Satellite from Ref. [6]

.

pressure of the photons coupled to the ionized baryons resists this compression resulting in

oscillations. Different scales oscillate at different frequencies so that so some scales reach

extrema at the time of recombination inducing maxima and minima in the anisotropies

present in the CMB [21]. Measurements of these anisotropies by Planck provide motivation

for considering a time and spatially varying α as we expect to see a connection between

the decoupling of photons, the atomic formation during recombination and perturbation

evolution over time. This happens because change in α would lead cause shift in binding

energy of hydrogen atom during the reionization epoch and therefore the redshift. The

Thomson scattering cross section is also changed for all particles, since it is proportional to

α2, further elaborated in the next section.

D. Thomson Scattering

Thomson Scattering is the light scattering of free electrons in low energy limit. This

becomes important when we study the physics of recombination. As the hot plasma that

used to be our universe cools down enough, first hydrogen atoms start forming. However,

since these hydrogen atoms form in very high energy state, the electrons emit photons to
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get to low energy states by: emitting photon to go from 2p to 1s(rate, Γ ∝ α3), or 2s to 1s

(Γ ∝ α8) energy levels or and higher-n Rydberg transitions [16]. This process is known as

decoupling. The exact time of decoupling is then dependent on the Thomson cross section

described as:

σT =
8πα2ℏ2

(3m2
ec

2)
. (30)

Thomson scattering also effects the CMB through the surface of last scattering. The

CMB radiation we observe today from recombination appears as if it were coming from a

spherical shell. It is called the surface of last scattering. Although our universe mostly

appear to be homogeneous, we observe matter inhomogeneities in the scale of 10 MPc. Dur-

ing recombination around ts ∼ H−1, some scattering still occurs. This causes baryons to

experience a drag from the photons. Perturbation analysis shows that the result is damp-

ing of baryon fluctuations on scales below the characteristic length the photons propagate.

This phenomenon is called silk damping. Theories regarding large scale structure suggest

that these inhomogeneities left their imprint in the CMB which we would observe today as

temperature anisotropies.

E. Acoustic Oscillations: Peaks in the CMB Power Spectrum

If we closely look at the features of the CMB power spectra, we notice peaks in the

oscillation. They are generated from acoustic oscillations in the photon-baryon fluid in

cold dark matter gravitational potential wells. As we previously discussed that the early

universe was extremely hot and therefore ionized and behaved like plasma. These primordial

plasma in the in the early universe caused photon-baryon interaction. Their interactions

created an enormous amount of outward pressure against the gravitational force by dark

matter that was concentrated at the center. These counter interacting forces created acoustic

oscillations. We can actually formalize this to understand how each of the peaks arises in

the power spectra. Since we are dealing with fluctuations in a perfect fluid, we can write

down our dynamic fluid equations as Fourier mode where we decompose the monopole of

the temperature field into:

Θl=0,m=0(x) =

∫
d3k

(2π)3
eik·xΘ(k), (31)
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Figure 4: CMB Temperature Map of the universe from Ref. [1]

.

and assume the temperature perturbations obey θ̇ = −1
3
kνλ which is the continuity equation

in Fourier space with ν as fluid velocity and k as the wave number given by2π/λ. In terms

of multipoles, ν will be a dipole moment in k direction. Finally, the 1/3rd in this equation

comes from the relation nγ ∝ T 3. Assuming no gravity, and no viscosity, using Euler

equation in Fourier space, we obtain:

θ̈ + c2sk
2Θ = 0. (32)

where cs =
√
ṗ/ρ̇ = 1/3 is the sound speed in the fluid. This has solution

Θ = Θ(0) cos (ksrec) +
θ(0)

kcs
sin(ks), (33)

where s is the distance sound can go within some finite time, also known as the sound

horizon. When ks << 1, the perturbation directly depends on initial conditions. This

is why we can extract information about inflation, large scale structure from CMB power

spectra. The oscillations of these Fourier modes can be thought of as terrestrial fluctuations

in power spectra. Modes caught at their maxima during recombination are seen as peaks in

the power spectra.

So far, we have considered Temperature distribution without gravitational effects. But

when we consider initial condition that becomes important. We get an extra term in our

solution that shows the tension between pressure gradient from photon baryon interaction

and gravitational potential gradient. Thus the compression from gravity and decompression

from pressure thus creates sound oscillations. The first peak in the CMB corresponds to
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the mode that is caught in its first compression by recombination. The second peak at

roughly half the wavelength corresponds to the mode that went through a full cycle of

compression and decompression by recombination. On the other hand, for photons to climb

out of the gravitational potential well after recombination, they experience a small redshift

which shows up in the temperature anisotropy as we see in figure 4.

However, after recombination, photons stop interacting with baryonic matter and we enter

matter domination era from radiation domination. During radiation era, radiation drove the

acoustic oscillations by making the gravitational force evolve with time [22]. However, matter

does not do that. Therefore, the acoustic oscillations starts to diffuse away. This diffusion

damping takes place in length scales of λ ≤ λD = λ
√
N where λ = 1

ne/σT
which is the mean-

free path to Thomson scattering and N = c/(Hλ) is the mean number of scattering events

experienced by a CMB photon prior to decoupling. As the background density decreases

with time, the potential decreases too. This allows the compressed fluid to leave without

dealing with any gravitational potential. The universe at that time, becomes cold dark

matter dominated instead of baryon-photon interaction dominated allowing the acoustic

peak to rise as matter to radiation ratio decrease. That is the third peak in the CMB power

spectra. After that we see the power spectra mostly diffuses away.

Because of these, the sensitivity of CMB to α depend on spatial dynamics of recombina-

tion and damping of perturbation.

F. The BSBM and the Runaway Dilaton Model

In Section 2.2, we talked about using scalar field to account for dynamic vacuum energy.

The scalar field is also used in high dimensional unification theories to make the extra di-

mensions small. Since we only observe four dimensions, it is likely that the extra dimensions

are small. The scalar field associated with extra dimensions, make sure that the extra di-

mensions are small and stable [29]. The stability condition is important because most of the

times, the scalar field will be coupled to the matter fields. Any time or spatial variations of

this field will then be seen as a variation of the interactions’ coupling constants.

One of the first attempt for unifying fundamental constant was Kaluza-Klein’s 5D theory

(see Ref. [23, 25]) for unifying electromagnetism and gravity. Compactification of the fifth

dimension, resulted into coupling with a scalar field and matter. Time variation of α was also



18

analyzed for a self-consistent relations if there are simultaneous variations of the different

coupling constants [27]. Other five-dimensional theories, based on Brane-World models, were

also used to study variations of the fine structure constant [4, 32, 37]. Relatively recently

developed super string theory models also allows variation in the fine structure constant

[11].

G. BSBM Model

Without assuming any extra dimensions, Beckenstein formulated a model that allows

fine structure constant to vary using a classical description of the electromagnetic field and

made a set of assumptions to modify Maxwell equations to take into account the effect of

the variation of the charge of electron. In his theory, the scalar field coupled to matter fields

which interact electromagnetically. However, he did not take the effect of field on Einstein’s

equation into account. This was later generalized to include gravitational effects by Sandvik,

Barrow and Magueijo.

Beckenstein’s formalism for allowing e to change while keeping Planck’s constant and c

constant and varying α can be done by letting e take on the value of a real scalar field

which varies in space and time e0 → e = e0ϵ (x
µ) where ϵ is dimensionless scalar field similar

to ϕ in our previous discussions. e here is the electromagnetic coupling. Then e couples

with the Gauge field as Aµ in the Lagrangian. Then under the Gauge transformation

(ϕ(x) = eiθ(x)ϕ(x)), the action is still invariant [35]. For constant ϵ, the Lagrangian of the

electromagnetic field is Lcm = −F µνFµν/4 where Fµν is the Gauge invariant electromagnetic

field tensor. The dynamics of the field is controlled by kinetic term Lϵ = −1
2
ω (ϵ,µϵ

,µ) /ϵ2 as

in [3]. In the kinetic term w is hc/l2 with l being the characteristic length. Beckenstein’s

theory can be generalized for a cosmological constant by invoking gravitational dependence.

Using the transformation ϵ → ϕ ≡ ln ϵ, the total action in a cosmological scenario for an

accelerating universe can be written as

S =

∫
d4x

√
−g
(
Lg + Lmat + Lϕ + Leme

−2ϕ
)
. (34)

To obtain cosmological equation for the dynamics of the scalar field, the action can be varied

with respect to the metric to obtain Einstein’s equation:

Gµν = 8πG
(
Tmat
µν + T ϕ

µν + T em
µν e

−2ϕ
)
, (35)
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and varying with respect to ϕ gives dynamic equation of motion for the scalar field as:

□ϕ =
2

ω
e−2ϕLem. (36)

L vanishes for a sea of pure radiation. Then Lem = E2 − B2 =0. This will suggest

insignificant changes in e during radiation epoch which however is not the case for matter

epoch. The contribution of matter to the right hand side of the equation can be written

using the parametrization ζ = Lem/ρ.

Assuming a spatially flat, homogeneous universe (assumptions we used for FRW metric),

we can write down Friedmann equation for this model:(
ȧ

a

)2

=
8π

3

(
ρm
(
1 + ζme

−2ϕ
)
+ ρre

−2ϕ + ρϕ + ρΛ
)
. (37)

Using Eq. (37), we can also write down conservation equations for the non-interacting

radiation (using ρ̃r ≡ ρre
−2ϕ ∝ a−4) and matter density

ρm + 3Hρm = 0

˙̃ρr + 4Hρ̃r = 0
(38)

This gives us a Friedmann universe consistent with time variation of α. The variation of ϕ is

almost constant during radiation epoch because of the Lagrangian but during matter epoch

α increase slightly towards lower redshifts and leans towards being constant values as dark

energy takes over. This reduction in α variations is strongly constrained by observations [9].

We will look at constraints of coupling on this model based on the work in [3] and Planck

CMB data for time variation in α.

H. Runaway Dilaton Model

The other theoretical model that we consider for this work is the Runaway Dilaton model.

It is a string theory inspired model that has low energy and the extra dimensions are coupled

with a massless scalar field called Dilaton. If the dilaton has an order unity coupling to the

dark sector, the runaway of the dilaton towards strong coupling can give us dynamical dark

energy, violations of the Equivalence Principle and variations of α. For smaller couplings,

the model is equivalent to ΛCDM.The potential for strong and weak coupling can be shown

similar to Fig 5. A standard solution for this stabilizes the dilaton in the weak coupling
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Figure 5: Scalar field potential evolution for strong and weak coupling. Image credit:

Perimeter Institute.

region and gives the dilaton a mass and shortens its interaction range. The strong coupling

can be corrected by trivializing the coupling at a constant value at infinity [28].

Bi(ϕ) = ci +O
(
e−ϕ
)

(39)

The Lagrangian for the Runaway dilaton is defined as (for further discussion see [7, 11]):

L =
R

16πG
− 1

8πG
(∇ϕ)2 − 1

4
BF (ϕ)F

2 + . . . , (40)

where R is the Ricci scalar and BF is the gauge coupling function. One can show the

Friedmann equation for this model is [28].

3H2 = 8πG
∑
i

ρi +H2ϕ′2. (41)

The sum over ρ is over all the components of the universe and the dilaton potential. The

kinetic energy of the scalar field is included in the last term. The derivative is with respect

to p = ln a+ const. The total pressure and density for this system is then

ρϕ = ρk + ρv =
(Hϕ′)2

8πG
+ V (ϕ) (42)

pϕ = pk + pv =
(Hϕ′)2

8πG
− V (ϕ). (43)
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This is similar to the quintessence case as we described in BSBM model. In low energy

level, both of the scalar field behave similarly. Using the Lagrangian and the described

transformation using logarithm of the scaling factor, the equation of motion can also be

written as below[11].

2

3− ϕ′2ϕ
′′ +

(
1− P

ρ

)
ϕ′ = −

∑
A

αA(ϕ)

(
ρA − 3PA

ρ

)
(44)

The sum of ρ and P in this equation the total energy density and pressure respectively,

both obtained as sums over the various components that fills the universe except the kinetic

energy density and pressure of the scalar field as shown above. The αA(ϕ) term on the right

hand side is a dimensionless quantity that measures coupling of the scalar field of different

particle types defined as:

αA(ϕ) ≡
∂ lnmA(ϕ)

∂ϕ
. (45)

For this work, we consider both the electromagnetic and matter coupling separately and

explicitly add dark energy to the density equations. The dynamic equation used for this

work with necessary couplings is explicitly explained and demonstrated in Section IV.

III. UNDERSTANDING THE NUMERICAL METHODS

For this work, we constrain couplings and free parameters in the larger theoretical models

described above to find cosmological models that are consistent with α variation. Instead

of directly using the models to reconstruct CMB power spectra, we build on the work of

Ref. [17] where they calculated principal components which represent the directions of the

CMB data that explain a maximal amount of variance (further discussion on the numerical

method below). Using their work, we see how much different PCs each models mix and

produce and minimize that difference.

A. Principal Component Analysis

Principal component analysis is a way of reducing dimensional analysis calculation while

preserving most of the information. In other words, we compose a list of different charac-

teristics of some objects in our case fundamental constants. And since many of them will
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Figure 6: Finding best fit line of a data set using Principal Component Analysis, adopted

from Ref. [31].

measure related properties , we are able to summarize each variation with fewer charac-

teristics. PCA looks for properties that show as much variation as possible and are able

to reconstruct the original characteristics. When a few properties are correlated, we can

reconstruct a new property by projected all the points in the plain on some line that is given

by some linear combination λ1x+λ2y+λ3z. PCA finds the best fit value of all the possible

linear combination by keeping the variance highest and error lowest. In figure 3.1, as we can

see, the spread of the white dots is the average squared distance from the center of the data

to each white dot known, also known as variance in statistical terms. On the other hand, the

total reconstruction error is measured as the average squared length of the corresponding

dotted lines. But as the angle between dotted lines and the green line is always 90, the sum

of these two quantities is equal to the average squared distance between the center of the

data and each white dot. This average distance does not depend on the orientation of the

green line, so the higher the variance the lower the error as their sum is constant. Now, the

way we achieve this is by taking a co variance matrix which is a n × n symmetric matrix

that has as entries the covariances of all possible pairs of the initial variables. For a three
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dimensional case it can be written as
Cov(x, x) Cov(x, y) Cov(x, z)

Cov(y, x) Cov(y, y) Cov(y, z)

Cov(z, x) Cov(z, y) Cov(z, z)

 , (46)

where the covariance of with itself is simply the variance. Now this matrix can be diag-

onalized by simply transforming it with orthogonal basis given by it’s eigenvalue which

transforms the above matrix to
Cov(x, x) 0 0

0 Cov(y, y) 0

0 0 Cov(z, z)

 . (47)

What this means is that there is no correlation between any two points. Therefore, the

maximum variance is achieved when we take the projection on the first coordinate axis. It

follows that the direction of the first principal component is given by the first eigenvector

of the covariance matrix.

For our mentioned model parameter variations, PCA will allow us to forecast uncertainties

with which we can determine our model parameters. To achieve this, we use something called

the fisher matrix which will let us calculate the covariance matrix associated with maximum-

likelihood estimates. Assuming our model is dependent on a set of parameters Γ = γ1, γ2, ....

However, since we do not know true values for γn, each of the parameter ”guess” will have

some error, σ. So, we use a method called Best Unbiased Estimator. Now since for each value

of our parameters, there will be some uncertainty, we can write down a likelihood function

L (x,Γ) where x is probability of making any observation. In order to extract information

from a set of existing observations x0, the maximum likelihood estimator is used that gives

parameter estimate that maximizes the likelihood function for x = x0 as for a large data

set, the maximum likelihood estimator approaches a Best Unbiased Estimator.

If the parameter estimate is an unbiased function, then σi ≥ Fij
−1 where F is the Fisher

Matrix (Using Kramer-Rao Inequality) [18]. The entries of the Fisher Matrix is defined as:

Fij =

〈
∂2L

∂θi∂θj

〉
For our purpose, we can write the likelihood function as L(p⃗ | d,M) where M is our model,

d is Planck data and p is parameter for such a model. The Fisher matrix then for CMB can
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be written as

Fij =

(
∂2 lnL
∂p2i

)
=

tmax∑
l=0

∂C⃗l

∂pi
·Σ−1

t · ∂C⃗l

∂pj
, (48)

where the CMB power spectra vector is given by, C⃗ℓ =
(
CTT

t , CEE
t , CTE

l

)
Here the TT,

TE, EE power spectra are taken into account because CMB light coming from a given

direction in space has both an intensity and a polarization. Planck satellite can measure both

and allows us to look at polarization-polarization(EE), intensity-polarization(TE), intensity-

intensity(TT). Then the covariance matrix for a given multipole ℓ is,

Σℓ =
2

2ℓ+ 1


CTT 2

CTE2
CTTCTE

CTE2
CEE2

CTECEE

CTTCTE CTECEE 1
2

(
CTE2

+ CTTCEE
)


ℓ

. (49)

We assume there to be no cross-multipole correlations which allows us to use the defined

CMB fisher matrix entries.

Ref. [17] used this formalism to generate principle components for α variation. In 3.3,

instead of ρ, they used α in the fisher matrix. Then they generated principal components

from the Fisher matrix for α variation by diagonalising and decomposed the fisher matrix

into its eigenbasis such that,

Fij = Sim.Fmn.Snj, (50)

where Sim is the matrix of eigenvectors of the Fisher matrix and Fmn is a diagonalised matrix

of the eigenvalues. These eigenvectors are recast as eigenfunctions using the basis functions

generated by a complete set of basis functions, ϕi(z), over the redshift space zi ∈ (300, 2000).

This can be formally written as:

Em(z) =
N∑
i=1

Simϕi(z). (51)

Here Em is the principal component. And as discussed, E1 will contain most information,

E2 after that and then E3. CMB angular power spectra for a fine structure constant model

is shown in fig 7. The eigenmodes propagate through the Thomson optical path which is is

a measure of opaqueness along the path of light due to Thomson scattering, and then onto

the CMB.
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Figure 7: Fine structure constant PCA eigenmodes for Cosmic Variance experiment with

the grey-lines as peaks of the Planck fiducial power spectra as seen in Ref [17]

B. Monte Carlo Markov Chain

To understand how Monte Carlo Markov Chain is used for this work, we’ll be revisiting a

few statistical results. Monte Carlo simulation is a numerical technique of sampling random

distribution from data without knowing the true underlying distribution to draw inference

about the population. For Monte Carlo simulation, we need to understand dependent prob-

ability well.

To dive into this, we can discuss the can discuss seemingly simple yet elegant Monte Hall

problem. The problem is simple: Imagine a gaming show where you have to guess what is

behind a closed door. For simplicity imagine 3 doors and you are told there’s a car behind

one of them. Now, if you guess the right door you win the money. To begin with, the

probability of you choosing the right door is 1/3. Now, the host of the show opens one of

the doors and shows you that it is empty. He also gives you a chance to change your answer.

The question is should you stick to your first choice or change your answer. Which door

should you choose to have better odds of winning?

It is often intuitive to think now that one door is eliminated the probability of you

choosing the right door is 0.5. However, this is not the case. The probability of the door

you chose first being right is still 1/3. However, if you switch the odds of you winning is
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2/3. Why is that? Because, the odds of the car being behind the two doors that you did

not choose was 2/3. Once one of the doors is opened and because since the host knows it

is empty, the probability is concentrated on the remaining door. We can now formalize this

idea.

For two events A and B, we will denote P(A) as probability of A, P(B) probability of B,

probability of B given A as P (A|B). We will consider that event A and B are dependent

events. Then P(A and B) = P(A) P (A|B). Since P(A and B) is the same as P(B and A),

we get:

P (A|B) =
P (A)P (B|A)

P (B)
. (52)

This is Bayes’s theorem. Now, for our work we can imagine event A as Hypothesis and B

as Data. Then, we rewrite Bayes’s theorem transform in this new notation as:

P (H|D) =
P (H)P (D|H)

P (D)
, (53)

where P(H) is the probability of the hypothesis before we using the observed data, called the

prior; P (H|D) is the probability of the hypothesis after we use observational data, called the

posterior, P (D|H) is the probability of the data under the hypothesis, called the likelihood

and P(D) is the probability of the data under any hypothesis. P(D) is typically just a

normalizing constant (If we plug in probability and likelihood for the three possibilities in

Monte Hall problem we can actually check see the posterior increasing for switching doors).

For our work, we are interested in the distribution of the parameters. We do this by

generating random numbers from a normal distribution which we can think of as a proposal

distribution. If we draw a density plot (histogram) of the randomly generated samples,

for a large enough sampling, the density curve will have a similar shape to the proposal

distribution. However, in this case we are not assuming the proposal distribution does not

change for one iteration to the next. However, as we have seen in Monte Hall problem that

can lead us to incorrect estimates. So, for Monte Carlo simulation, we make sure that each

point in the density plot is dependent on the previous one. Each value this time is drawn

from a normal distribution which has mean equal to previous value of the generated sample.

The path of this is called a random walk. In this case, however, the density plot is not the

same distribution as the one the samples were drawn from. However, for a Monte Carlo

simulation, we do not accept all the randomly generated samples since that will not give us

a good estimate for our data. So, instead what we do is, we calculate posterior using for
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some randomly generated value. We can do so by multiplying the prior distribution by the

likelihood function. Then if the ratio of the probability of the new value and the previous

one is greater than 1, we always accept the new sample. However, we do not discard the rest

of the samples. Rather, we use the ones with ratio less than ones as acceptance probability.

We then draw a uniform random distribution. If the random number is less than acceptance

probability, we reject it.

Although this is the idea behind the most simple MCMC algorithm, The Metropolis-

Hastings, for our work we use a slightly more efficient version of this. The MCMC in this

method is done by advancing an ensemble of K walkers based on the state of the ensemble

where the proposal distribution for one walker k is based on the current positions of the K-1

walkers in the complementary set of the parameter space. To update position of the walker

at some position Xk, a walker Xj is randomly chosen from the remaining walkers and a new

position is proposed as seen in [13]:

Xk(t) → Y = Xj + Z [Xk(t)−Xj] , (54)

where Z is a random variable drawn from a distribution g that satisfies g (z−1) = zg(z) and

g(z) ∝

 1√
z

if z ∈
[
1
a
, a
]

0 otherwise
(55)

The probability of accepting the proposal is:

q = min

(
1, ZN−1 p(Y )

p (Xk(t))

)
. (56)

However, since our proposal distribution is symmetric in Eq. (54), evolving walkers in paral-

lel can disrupt the balance. So, we split the full ensemble into two subsets and simultaneously

update all the walkers in one subset based only on the positions of the walkers in the other

subset using Eq. (54), (55) and, (56). Then we use the updated subset to update position

of the walkers of in the subset the update was based on.

The generic parallelization make this algorithm extremely accurate. We use the emcee

package for this work that implements this algorithm for constraining our parameters.

IV. CALCULATIONS AND RESULTS

As stated in previous sections: we chose two models to explore α variation in: BSBM

and runaway Dilaton Model. We use the general dynamic equations discussed in Important
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Figure 8: Time variation of α as a function of redshift for BSBM and Runaway Dilaton

governed universe

physical background section with some parametrization discussed below. Since the QSO

data we are using for this work is given as function of redshift, we evolve α variation in these

two models as seen in fig 8.

A. BSBM

For our work, we assume a spatially flat, homogeneous, and isotropic universe that abides

by the Friedmann equation with expansion scale factor a(t). From section 2.6, we can write

down the general equation for BSBM as [the □ is the same operator described in Eq. (16)]:

□ϕ = − 2

ω
e−2ϕζmρm. (57)

The scalar field ϕ plays a similar role to the dilaton in the low-energy limit with the impor-

tant difference that it couples only to electromagnetic energy. The ζmρm term comes from

Lagrangian of the field which is simply E2−B2. During matter domination, change in e can

occur. ζm comes from the parametrized ratio of the Lagrangian and energy density. There-

fore the value of ζm depends protons, neutrino mass, as well as contribution from current
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of quarks as the Lagrangian is E2/2. However, it also has to account for the non-baryonic

fraction of matter. Thus the value of ζm can span a wide range of values depending on

the nature of the dark matter (e.g. for superconducting cosmic strings ζm = −1 whereas

for neutrinos ζm ¡¡1). The value for ζm is between [-1,1]. Through our work we constrain

this parameter using both QSO and CMB data to see if that allows α variation with time.

Another parameter we let vary is the mass that comes from the potential when we set it to

m2ϕ2.

For BSBM model, we use everything in Planck unit with h = c = 1 and M = Mpl. We

are also considering a ΛCDM universe where the cosmological constant ΩΛ is 0.6825, matter

density Ωm = 0.3175. For radiation density, we consider both present-day photon density

and the neutrino density. The neutrino density is related to the photon density by

ρv = 3.046
7

8

(
4

11

)4/3

ργ, (58)

where ρν and ργ is neutrino and photon density respectively. The photon density can be

written as:

ργc
2 =

∫ ∞

0

hvn(v)dv = aBT
4
0 , (59)

where aB =
8π5k4B
15h3c3

with kB as Boltzmann’s constant. By plugging in T0 = 2.725 as observed

by Plank, we get radiation density

Ωr =
(
Ωγh

2 + Ωvh
2
)
h2 = 9.235× 10−5. (60)

Now, Eq. (57) shows the scalar field as a function of time. However, our motivation

for this work is drawn from the QSO observation which provides evidence for possible α

variation shown in fig 9. Since the data we are using provides alpha variation with redshift,

we rewrite our dynamic equation as a function of redshift assuming the redshift is zero at

present day and we go backwards in time. So, we write the dynamic equation with the

following conversions:

H = H0(Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ) ,
ȧ

a
= H , a =

1

1 + z
. (61)

Using these conversations, for the right hand side, we also make some adjustments as we

change everything to Planck unit. We multiply ω in Eq. (57) with a dimensionless quantity
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Figure 9: Variation of α using Quasar Data with plausible theoretical bestfit lines as seen

in Ref. [35]

ω̃. Then, ω = ωuω̃ then ω =
(

ℏc
lp

)2
ω̃. and ρm =

3ΩmH2
0a

−3

8πG
. Here ζm = Lem

ρ
, then right

hand side of the equation becomes, 2ζm
ω̃

l2p
(hc)2

3ΩmH2
0a

−3

8πG
e−2ϕ. Here 1

8πG
is M2

pl and
(

lp
ℏc

)2
has

unit length and unit of 1
M2

pl
. Then the right hand side becomes 6ζm

w
ΩmH

2
0 (1 + z)3e−2ϕ.

Combining Eq. (57), (61) we get the dynamic equation for the scalar field is:

d2ϕ

dz2
− dϕ

dz

(
2

(1 + z)
− (3Ωm(1 + z) + 4Ωr)

2(Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ)(1 + z)3

)
+

m2ϕ

(1 + z)2(Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ)

= −6ζ

ω

Ωm(1 + z)√
Ωm(1 + z)3 + Ωr(1 + z)4 + ΩΛ

e−2ϕ. (62)

We can get a an estimate for the QSO bestfit for ζ from Ref. [35] at redshift 3 for 0

mass. ζm is predicted to be in the order of 10−4 for the above shown theoretical models to

be consistent with QSO observed data points and error bars. However, as we let the mass

vary we can look at the behavior of the scalar field at redshift 3 and see if that affects our

prediction of ζm/ω values.

We plot at the behavior of the scalar field in fig 10(a) by numerically solving Eq. (62)

for a wide range of values of ζm/ω. We also plot the scalar field for Ref. [35]’s bestfit of ζ/ω

in black on the same plot. This is fairly simple to do since the scalar field and α variation

are related to each other by α = exp(2ϕ)e20/hc (shown earlier). We can then Taylor expand

to get ∆α
α

is 2ϕ. Now, we let the scalar field evolve to higher redshifts(earlier times) to
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Figure 10: (a) Scalar field at redshift 3 fitted with QSO data(Black dotted lines) while

varying mass and coupling ; (b) Scalar field at redshift 1000 fitted with QSO data (Green

dotted lines), CMB constraints with Planck error bars(black lines) and CMB constrains

with 0 α variation with Planck error bar (blue lines) while varying mass and coupling

predict what happens during recombination. This also allows us to see if the α variation is

consistent across time. We do so by numerically evaluating the scalar field at redshift 1000

again allowing ζ/ω and m to vary a wide range of values. We then show scalar field contours

for ζ/ω bestfits at QSO, for zero α variation with Planck errorbar during recombination, α

variation prediction from Planck data up to 2σ in fig 10(b).

This analysis inspired us to further analyze α variation at CMB since we see promising

signature of free parameter variation being consistent during both redshift 3 and 1000. We

use principle component analysis to do so.

Ref. [18] gives us PCA Eigenmodes for fundamental constant variation. Their work also

paves a way for adding linear change to parameter variations. The generic variation in some

fundamental constants C as a function of eigenmodes constrained in the analytic method is

defined by:

ρi =

∫
∆C

C
(z) · Ei(z)dz. (63)

The assumption for calculating variation this is that we are in some perturbative regime

where the relative change in the constant is proportional to the relative change in the model

amplitude. Since we assume linearity, we can calculate rhoi as we change parameters which

gives us projections of different models. Using PCA Eigenmodes as data, we can write down
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Figure 11: 2σ contours for BSBM coupling and logarithm of mass during recombination

from Planck 2018 data using Monte Carlo simulation

χ2 values for our models as:

χ2 = (Modeli − α CVL Mode1i)
TΣij(Modeli − α CVL Modei). (64)

Since the likelihood for this is just e−χ2/2, minimizing 3.5 gives us the actual bestfit values.

Although, we can do that directly using the information we have now, this method only

allows us to vary one parameter at a time. So, we use MCMC since it allows sampling from

a probability distribution as described in Understanding the Numerical Methods Section.

We use a python package named emcee.

The way emcee works is that the algorithm simultaneously evolves an ensemble of K

walkers S = Xk where distribution for one walker k is based on the current positions of the

K − 1 walkers in the complementary ensemble. This process is continued and repeated for

each walker in the ensembled series till the MCMC chain is repeated [13].

1 Ref [17] generated eigenmodes for a cosmic-variance-limited (CVL) experimental setup and investigated
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Figure 12: Change in Cℓ due to excitation in principle components for change in coupling

and mass at bestfit, one σ and two σ level.

For our work, we use this algorithm for minimizing −χ2/2 value as we let both of our

parameters vary. We calculate ρ using Eq. (63) and use Ref. [18]’s PCA eigenmodes as

data points for “observations” at recombination. The resulting constraints including and

upto 2σ is shown in figure 10. As we can see, when the field becomes extremely massive,

mass becomes unconstrained and for all ζ/ω values we get a good fit that is consistent with

Planck.

Any Principle Component is a change in α(z) that induces a change in Cℓ that is de-

the structure and propagation from these variations in αEM to the CMB anisotropies.
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tectable at 1σ if α(z) = α0(1 + σiEi(z)). We use Ref. [18]’s ∆Cℓ values for the three PC’s

and adopt them for our model by:

∆CBSBM
ℓ =

Npc∑
i=1

ρj∆Cj
ℓ . (65)

We show change in Cℓ at one σ level for our parameter constrain from MCMC chains in

Fig 12.

B. Runaway Dilaton

From our previous discussion on Runaway Dilaton, we have the governing equation for a

dilaton governed universe as:

2

3− ϕ′2ϕ
′′ +

(
1− P

ρ

)
ϕ′ = −

∑
A

αA(ϕ)

(
ρA − 3PA

ρ

)
. (66)

Here αA determines the effect of cosmological matter on the evolution of the scalar field

[8, 10]. During radiation domination, ρA − 3PA = 0 then the driving force vanishes as

the right hand side goes to zero and the scalar field is not driven to approach some value

towards infinity. Then the approximate value of the scalar field is ϕ = ϕend. However, this

is not the case for matter domination era. For non relativistic matter, the right hand side

of the equation is non-zero. In the slow roll approximation, shown in Important Physical

Background Section, equation-of-state parameter becomes negligible and we are left with

the dark matter coupling to the field

ϕm′ = αm(ϕ). (67)

Note, this α is not the same α we are concerned with throughout this work. From Ref. [11],

we have,

mm(ϕ) ≃ mm(+∞)
(
1 + bme

−cϕ
)
. (68)

Then, using Eq. (45), we can write down the matter coupling to the scalar field as αm =

− bmce−cϕ

1+bme−cϕ . Dark matter couples to the scalar field in the dilaton scenario differently then

ordinary matter. Although the density of dark matter is much larger, we still account for

baryonic matter on our work to be consistent. Now, going back to our discussion on dilaton

coupling, in the string frame, the gauge coupling of the field is linked to the string mass using
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Eq. (39). Then we can write down the gauge coupling dependence explicitly as g2F = BF (ϕ).

One can show that approximately the the scalar field coupling to hadronic matter can be

written as below using the Einstein-frame confinement scale dependence on scalar field:

αhad(ϕ) ≃

[
ln

(
M̃s

ΛQCD

)
+

1

2

]
∂ lnB−1

F (ϕ)

∂ϕ
. (69)

The factor in the right hand-side to a good approximation is 40. Using Eq. (39), the

parametrized field coupling gives us:

B−1
F (ϕ) = B−1

F (+∞)
[
1− bF e

−cϕ
]
. (70)

Again, using Eq. (45), we can write down the coupling as :

αhad = 40

(
bF ce

−cϕ

1− bFe−cϕ

)
. (71)

Since we will be using Planck and QSO data again to constrain couplings in this model, we

write down the equation of motion, as a function of redshift. Using the dark matter and

baryonic matter dependence, our governing equation of motion is:

4(1 + z)3ϕ′
3− (1 + z)2ϕ′2

+
2(1 + z)4ϕ′′

3− (1 + z)2ϕ′2
−
(
1 +

ΩΛ

Ωm(1 + z)3 + ΩΛ

)
(1 + z)2

dϕ

dz

=
bmce

−cϕ

1 + bme−cϕ

(
ρdm
ρ

)
+ 40

(
bF ce

−cϕ

1− bF e−cϕ

)(
ρhad
ρ

)
. (72)

A possible variation of α gives the most constraint on the coupling limit as because of our

previous assumptions, e2 ∝ B−1
F (ϕ). Then e2(ϕ) = e(+∞)[1 − bFe−cϕ]. Since α is simply

e2

ℏc , we can write down the relation between α variation and the scalar field as below:

∆α

α
= bF

(
e−cϕ0 − e−cϕ

)
(1− bF e−cϕ0)

. (73)

For simplicity, we set c=1 and attempt to constrain the gauge coupling bF , matter cou-

pling bm and the initial condition ϕ′. Similar to what we did for BSBM, we run Markov

chain simulation to draw histograms and find best fit that minimizes χ2 for α PCs. For

this model, we don’t have constraints on parameters from previous literature either for our

induced general model so, we also run the simulation at redshift 3 and constrain couplings

with Quasar data.

The red curves shows best fit for coupling that are consistent with CMB, and blue curves

shows best fit for coupling that are consistent with QSO. We see overlap between the two
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Figure 13: Constraining dilaton couplings using CMB(in blue) and QSO(in red) data

.

regions. Although there is a big degeneracy, the coupling bestfit has overlaps within 1 sigma

contours (here 1 σ is the darker blue/red curves). The consistency across both models for

alpha variation is highly reassuring. As a next step for this work, we plan to draw residual

plots using couplings and free parameter values that are marginally between 1σ and 2σ

contours. The idea is to draw the Eigenmode projections using Eq. (63) and comparing

with PCs to see how much variation we can expect.

V. CONCLUSION

In this work, we devised a numerical tool to test fine structure constant variation by

constraining scalar field couplings and free parameters using Quasar and Cosmic Microwave

Background Radiation data. We can also test other theories for α variation using this
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method. We have seen evidence for time variation of α across redshift 3 and 1100(approxi-

mately).

For future direction of this work, instead of using average value of quasar at Redshift 3,

we can explicitly use quasar data points and make more accurate MCMC simulations for

constraining parameters in both model. We also plan to further look into the degeneracy in

the Runaway Dilaton couplings. On the other hand, the unconstrained mass in BSBM is an

interesting phenomena. We plan to look into the critical mass limit past which the contour

blows up. So far in this work, we did not consider the contribution of the scalar field in the

expansion of the universe. We can check for self consistency in the expansion of the universe

by adding scalar field in Hubble parameter. We can also induce an effect like lensing and

constrain it using α variation.

We can use forecast of CMB S4 likelihood to rerun our Monte Carlo simulations to predict

how better these models will be constrained by the next generation CMB experiment. We

can also analyze spatial variation of α with the numerical tools we used for this work.

VI. CODE REPOSITORY

All code written for this work can be found in the this github repository: https://gi

thub.com/htohfa/Fine-Structure-Constant-Variation. For solving the differential

equations, we use fourth order Runge-kutta method, and emcee package for running MCMC

chains.
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